CNN
Load image files and make the Convolutional Deep learnig model. images = os.listdir(~~~path) # image load and print img = Image.open("PATH AND FILE").resize((?, ?)) plt.title('NAME') plt.imshow(img) plt.show() # image to array and scaling img = Image.open ("PATH AND FILE").resize((?, ?)) img = np.array(img)/255. # after work, chage array again list_arr = np.array(img_list) # handle as x, y # or img2 = image.img_to_array(img_origin) img2 = img2.reshape((-1, ?, ?, 3)) img2 = preprocess_input(img2) features = model.predict(img2) #print(decode_predictions(features, top=3)) # Conv Model from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D model = Sequential() model.add(Conv2D(32, kernel_size=(5,5), strides=(1,1), padding='same', activation='relu', input_shape=(?,)))) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.2)) model.add(Flat...