Tips for your data analysis and AI code # 1. Easy on your eyes, easy to your analysis sns.countplot(data=df , x ='target_column', hue='satisfaction') df['target_column'].value_counts().plot(kind='bar') # 2. Save time df['Bool'].loc[df['Bool'] == 1] = 'Y' df['Bool'].loc[df['Bool'] == 0] = 'N' # 3. Don't forget to invers transforming le = LabelEncoder() df['column'] = le.fit_transform(df['column']) le.inverse_transform(result) # 4. Why not pretty? corr_data = df.corr() fig, ax = plt.subplots(figsize=(12,10)) mask = np.zeros_like(corr_data) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr_data, annot = True, mask=mask, linewidths=1., cbar_kws={"shrink": .5}, vmin = -1, vmax = 1 ) plt.show()